
Chapter V 

Application to a Fusion Problem 

A. Introduction 

The series of calculations discussed in this chapter was done in support of a newly 

proposed Magnetized Target Fusion (MTF) concept (Thio, C. F. et al., 1998 [84], [SS]) 

and the results were presented at the 1998 Innovative Confinement Concepts Workshop, at 

Princeton, NJ, April 6-9, and at ICOPS ‘98, Raleigh, NC. The results presented at ICOPS 

‘98 were done with the explicit code. In the present discussion some comparison of the 

implicit and explicit code is presented. 

It was hoped that the implicit code could be shown to model parts of the computa- 

tions of a practical problem faster than the explicit code. This has not happened yet, but 

this application has demonstrated that the two codes are in good agreement in 2D and 3D. 

A regime where the implicit code has functioned faster than the explicit code was dis- 

cussed in Chapter IV, Section G, but it came too late for this ability to be expanded into a 

practical problem. The regime was found after this dissertation was essentially written. 

. 

The new MTF concept consists of sixty or more neutral plasma jets in a spherical 

arrangement, imploding one or two small magnetized toroidal plasma targets. The 

plasma jets and targets are to consist of deuterium and tritium (D -T), and since they are in 

a neutral plasma state, they can be approximately modeled using hydrodynamic meth- 

ods. The jets, as envisioned, will merge together and form a spherically imploding piston 

or liner. Once the target ignites, the liner will supply fuel for the imploded target to burn. 

The jets are accelerated from plasma guns by a heavier ionized gas, possibly argon. The 
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heavier argon would also act as a tamper during implosion, and an absorber for x-rays to 

help protect the chamber and plasma guns from x-ray damage. Another layer of plasma 

could be introduced behind the argon, such as lithium or boron to absorb neutrons. 

Each target can be thought of as the plasma equivalent of a smoke ring confined by 

a stable toroidal magnetic field. It is well understood how to produce the plasma rings 

from specially designed plasma guns, and the toroidal configuration of the magnetic field 

in the targets is known to be stable [89]. The magnetic pressures will be weak compared 

to the hydrodynamic forces; hence, for the present calculations the target is replaced with 

a sphere or cylinder of neutral gases, and the magnetic field is ignored. 

It was hoped that the implicit code would be able to perform the calculations up to 

the time of impact of the jets with the target including the merging of the jets. This, how- 

ever, has not been demonstrated yet. The implicit code has been run on all three cases 

discussed in this chapter. 

Magnetized Target Fusion is a cross between Magnetic Fusion Energy (MFE), 

which uses a magnetically confined D -T plasma (for example the Tokamak), and Iner- 

tially Confined Fusion (ICF), in which a D -T target is imploded by laser or particle beams. 

MTF starts with a magnetized target and implodes it with any one of a number of means. 

The magnetized target is the important difference, because the magnetic fields of the target 

confine the ions and electrons, reducing the loss of energy from the target. It has been 

shown that such a target does not need as large a driver to initiate fusion as ICF requires 

[42], [50], [74]. The targets will be much larger and will require a less energetic driver. 

The explicit SPHINX code was used for all of these calculations, and a few of the 
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simpler calculations were repeated with the implicit code. The calculations are prelimi- 

nary and address only the hydrodynamic aspects of the problem. The study was mainly 

concerned with the merger of the jets and the formation of the imploding piston. Fusion 

was not considered in detail, except that the temperatures and confinement durations for 

ignition were sought within a few attempts, but no optimization was performed. 

The following assumptions were made for these calculations. The D -T plasma 

jets are considered neutral, so that no magnetic or electric fields are present. Losses due 

to radiation and thermal convection were not included. It is assumed that radiation losses 

will be insignificant up to the time of maximum compression. The argon driver plasma 

might not be neutral, so it might have electric and magnetic fields in it, and hence was not 

modeled in the present set of calculations. 

The first set of calculations considered a simple case of two jets merging at an 

angle and then accelerating a solid aluminum projectile. The next set of problems con- 

sisted of a cylindrical ring of jets aimed at the origin and a target of D -T. The third set of 

calculations modeled the 3D spherical arrangement of jets, and consisted of 60 jets in a 

soccer ball configuration, similar to the target chamber of the Omega laser fusion system 

at the University of Rochester, N.Y.. A soccer ball is covered with an arrangement of 

hexagons and pentagons, and the jets were placed at each of the sixty vertices. 

B. Neutral Plasma Jets Merging onto a Projectile 

The goals of this first set of calculations were (1) to see how the neutral plasma jets 

merge together, and (2) to find to what maximum velocity a small projectile can be acceler- 
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ated using plasma jets of different masses and velocities. The momentum was varied but 

not the energy, to see if this affected the coupling of the energy into the target. The accel- 

eration of projectiles to high velocities is of interest to the weapons community. The gas 

for the jets in this case is not D -T but a more massive gas. The problem was done with 

two jets, in 2D, using the explicit and implicit codes. The initial setup is shown in Fig. V. 1. 

hitial Setup for Two Jets Ilmpinging on a Projectile 

-0 - 
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Fig. V. 1. This is the initial setup for two plasma jets impinging on an aluminum 
projectile. The jets are aimed at the origin, and the target is placed ahead of the origin. 

The initial setup consisted of two jets, 15 degrees apart, and aimed at the origin, 

which was behind a stationary aluminum projectile. As the jets move toward the projec- 

tile, they expand due to internal pressure. On the way to the projectile, the jets collide 

with each other, forming a more dense core between them, and the squeezing of the core 



produces what will be referred to here as a “super-jet”, where the particles at the leading 

edge of the core are accelerated forward toward the origin and those at the rear of the core 

are accelerated backward. In some cases the super-jets were found to cut the projectile 

into pieces. This problem can be lessened by starting the jets farther away from the pro- 

jectile thus allowing the super-jet to spread out before striking the target. ! 

The velocities v and masses m of the jets were varied so as to increase the momen- 

tum but maintain constant energy between case studies. If the mass of the jets is 

increased by a factor of four and the velocity decreased by a factor of two, the momentum 

(mv) will be doubled while the energy 1/2(mv2) is kept constant between cases. The ques- 

tion then is: can the energy of the jets be transferred more efficiently to the target by 

increasing the momentum of the jets while maintaining constant energy? 

Three cases were run: (1) with the density of the jets set to 0.006 gm/cc, and a bulk 

velocity of 100 km/set, (2) with a density of 0.024 gm/cc and a velocity of 50 km/set, and 

(3) with a density of 0.096 gm/cc and a velocity of 25 km/set. The jets were modeled as 

a perfect gas with y = 1.4, the ratio of specific heats, and lo = 1, the average molecular 

weight. The initial temperature of the jets was set to 11,600 degrees Kelvin (1 ev). Each 

jet was represented by a 1x1 cm square rectangle of particles. There were 900 particles in 

each jet and 66 in the projectile. The projectile was aluminum using a linear-u, -up mate- 

rial-strength model, and the input for aluminum included: a solid density of 2.7 gm/cc, a 

sound speed of c, = 5.376e5 crn/sec, a slope of s = 1.55, y0 = 2.1, and ~1 = 0.0. 

Preliminary computer runs showed that the distance from the leading edge of the 

jets to the projectile should be about 7 to 5 cm, so that there was not too much overall 
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expansion in transit, and the super-jets had a chance to spread out. It was necessary to 

shorten the distance for the runs with slower velocities, so that they would all have about 

the same transit time; otherwise the expansion would become too great. 

An inward velocity can be added to each particle in a jet, as a function of its dis- 

tance from the axis of the jet, to counter the expansion due to the internal pressure, which 

would approximately model the inward focusing that a slight taper inside the plasma gun 

might impart to the jet. It was found by trial and error that the best range of focusing 

velocities was for the inward component of the velocity at the edge of the jet to be an order 

of magnitude less than the bulk velocity. This feature was used only in this two-jet prob- 

lem, where the emphasis was on getting the most particles to strike the projectile. It was 

not used in the implosion calculations because there the jets will confine each other. 

The first case, with the density of 0.006 gm/cc and the velocities of 100 km/set, 

was set up with the Al projectile positioned -1.0 cm from the origin and the leading edge 

of the jet started at a position of -6.5 cm from the origin, so that the jets were located 5.5 

cm from the projectile. A focusing velocity, of 10 km/set, was added to the jets. 

The jets first started to merge when they were about 3.4 cm from the projectile at 

time t = 0.202 psec, and the pressure, temperature, and density between the jets began to 

increase. The two jets formed a butterfly shaped pattern (see Fig. V.2) with a denser core 

between the jets and less dense wings out to the sides. Then at time t = 0.460 psec the jets 

first impacted the projectile. At the time of impact the wing pattern was about the same 

width as the projectile, so that most of the jet particles contributed to the impact. The 

final velocity of the projectile was about 5.9 km/set as obtained with the explicit code. 
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Comparison of the Implicit and Explicit Codes 
at t = 4.5 psec, for Two Jets Merging 

(b) 

Fil ;. v. 2 This is a comparison of the implicit (a) and explicit (b) codes for two merged 
jets at 4.5 43 ;6 and 4.5227 psec respectively. Both codes had 1866 particles. An overlay 
of the two ‘P Ilots shows that the particle positions, in general, are in very good agreement. 
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This case was also run using the implicit code. An overlay of the two plots of Fig. 

V. 2 would show that the particle positions are in very good agreement except for a few 

particles at the leading and trailing edges. Unfortunately the implicit code stopped run- 

ning at the point of impact, so there is no comparis’on for the projectile motions. 

The jets were initially displaced relative to each other in the y-direction by half a 

smoothing length, which is why the results are not exactly symmetric. This small dis- 

placement was made to see if there would be a mixing of particles. If they were left com- 

pletely symmetrical, one jet would be the mirror of the other, and there would be no 

mixing. Even with the offset there was very little mixing except within the super-jets. 

The second case, with the density of 0.024 gm/cc, was set up with the projectile 

positioned as before, but the jets were set only 5.0 cm from the projectile, to accommodate 

the slower velocities. Since the jet velocities were reduced by a factor of two, to 50 km/ 

set, the focusing velocities had to be reduced by the same factor of two so that they were 

still an order of magnitude less than the jet velocities. 

The jets first interacted at about t = 0.15 psec when they were about 5.2 cm from 

the projectile. At about t = 0.7 psec the jets impacted the projectile. At the time of 

impact the denser core between the jets had expanded to engulf the wings, but the width of 

the jets was about the same as the projectile, so that again most of the particles contributed 

to the impact. The projectile was separated into several chunks and several individual 

particles. The final velocities ranged from 3.7 to 7.9 km/set for the individual particles 

whereas the main chunks had velocities of 5.3,5.9, and 7.1 km/set. 

The third case, with the density of 0.096 gm/cc and a velocity of 25 km/set, was 
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set up with the projectile also at -1 .O cm from the origin, and a 5.0 cm separation between 

the jets and the projectile. For this case the jets were moving too slowly for the focusing 

to be of any use, because the reduced focusing velocity in x was quickly overwhelmed by 

the pressure within expanding jets. The wings expanded too fast to be of much use, so the 

distance was chosen to adjust the core width to fit the projectile. 

The jets started to interact at about 0.25 psec at a distance of about 5.2 cm from the 

projectile. For this case the core had expanded to a little more than the width of the pro- 

jectile and the wings had expanded quite a bit more so that they missed the projectile. In 

this case, approximately half of the particles hit the projectile, so the momentum was inef- 

ficiently transferred to the projectile. The projectile was cut in two, and a few individual 

particles were scattered around. The velocity of the bulk of the particles was roughly 4.5 

km/set. Variations on this case could be tried in which the focusing velocity could be 

increased or the distance between the jets and the projectile could be decreased. 

Drawing a conclusion from this, it appears that there are other aspects to consider 

when trying to go to higher momentums. The higher momentums seem to cut the projec- 

tile up. Also the slower velocities allow the jets to expand more in transit to the projectile 

making it more difficult to get all of each jet to hit the projectile, and an added focusing 

velocity has less effect on keeping the jet together because it is more quickly overwhelmed 

by the pressure. It appears that the high velocity of the lower momentum case helped 

more by getting the jets to the projectile before they had a chance to expand. So there is a 

trade off between the higher velocities and the higher momentum and distances. 
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C. The 2D Ring of Jets 

This set of calculations was performed to learn how uniform an imploding plasma 

piston ring can be made and how long it can confine the target particles. It was also 

learned what densities and temperatures could be achieved, from a hydrodynamic stand- 

point, for the implosion of a given target. The initial setup is shown in Fig. V. 3. 

Initial Setup for the 2D 24Jet MTF Problem 

Fig. V. 3. This is the initial setup for the 24-jet case in 2D. The jets are about LU 
cm from the target. Only one quadrant was calculated and then reflected around into the 
other three quadrants. 
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These calculations were done in 2D, and considered 24 jets in a ring positioned at 

every 15 degrees, and 20 cm from the origin. Each jet was 1 cm in radius and 3.8 cm in 

length The jets are assumed to exit the plasma guns at an initial velocity of 5~10~ cm/set 

with a density of 10m5 gm/cc, and all aimed at the origin. They were each given an initial 

temperature of 11,600 OK (or 1 ev). The target was modeled as a cylinder of radius lcm, 

and given an initial temperature of 23,200 OK. The case discussed here used the perfect 

gas EOS. The total number of particles used was 12,322, with 2,016 per jet, and 226 in 

the quarter target for runs using the explicit code. 

Because of the symmetry of the problem, only one quadrant of the problem was 

run with reflecting boundaries along the x- and y-axes. Taking advantage of the symme- 

try allows one to save on memory and computational time or to increase the resolution. 

When the jets start merging with each other, they form the super-jets as discussed 

in the previous section on two-jets. An earlier attempt had only 12 jets positioned at every 

30 degrees and closer to the target, but that did not allow the super-jets to spread out into a 

uniform front before hitting the target, and the super-jets tended to cut the target up. So 

the jets were moved back to 20 cm from the target and the number of jets increased to 24. 

This arrangement allowed the super-jets to merge farther away from the target and form a 

more uniform front by the time they reached the target. 

Figure V. 4 shows the system at maximum compression. The initial contact of the 

super-jets with the target caused some fluting on the target surface. But the growth of the 

fluting ceased when the main part of the jets arrived, and then all the target particles were 

swept up and compressed. The fluting caused the filigree pattern around the compressed 
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target in Fig. V. 4. The jets have merged together to form an imploding cylindrical piston 

(this is also referred to as a liner in some literature) that is the uniform circular region 

around the target. The bulk of the jet particles are still streaming in and are stagnating in 

the piston, which is confining the target. Each particle of Fig. V. 4 has a velocity vector 

attached to it, hence the radial lines on the jet particles that are still imploding. 

Maximum Compression for a 2D 24-Jet Case, t = 0.406 ps 

Fig. V. 4. This figure shows the 24-jet case at maximum compression. The target is the 
irregularly shaped pattern in the middle, of radius -0.3 cm. The piston is forming around 
the target uniformly and is the circular region around it. The jets are still streaming in and 
have a velocity vector attached to each particle, hence the radial rays. 
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The uniformity of density and shape of the piston met expectations. Most of the 

particles in the piston, from time t = 0.4 psec to t = 0.45 psec, fall within a density range of 

0.0002 gm/cc and 0.002 gmkc. The pressure for most of the piston particles is in a range 

of about 2ell to 2e12 dynes/cm The temperature was within a range of 6e6 to 5e7 OK. 

The trailing edge of the jets impacted the piston at about t = 0.45 psec. 

The target diameter, except for a few target particles, reached a minimum at t = 

0.406 psec with a diameter of about 0.3 cm, stayed there until about t = 0.45 psec, and was 

under 0.4cm until about 0.47 psec. At this point it started to expand more rapidly but was 

still within a diameter of 0.6cm at t = 0.5 psec. The duration of tight confinement of the 

target was about 70 nsec. The target material was compressed by a factor of about 37 

times. Most of the target particles fell within a temperature band of 6e7 to 2e8 OK, and 

the pressure was between about 5ell to l.le12 dynes/cm2 during maximum compression. 

The following results were obtained from a calculation around the maximum 

compression of the target. 

Piston narticles: 
Max temperature T = 1.18e8 OK at t’ = 0.408009 psec. 
Max pressure P = 1.07e13 at t = 0.412022 psec. 
Max density D = 0.00589 gm/cc at t = 0.412022 psec. 

Target narticles: 
Max temperature T = 3.15e8 OK at t = 0.408009 psec. 
Max pressure P = 2.02e12 at t = 0.408009 psec. 
Max density D = 0.000502 gmkc at t = 0.406022 psec. 

A few implicit runs were made repeating the explicit case discussed above to see 

how the implicit code would compare. It was hoped that the implicit code could compute 
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the early portion of the problem where the jets are running in and merging. However, the 

explicit code does this portion so quickly that it is difficult to beat it. The implicit code 

was run with 1,101 particles, 180 per jet, and 21 in the quarter target. It was run to a point 

close to where the particles first contacted the target. The implicit code’s best wall clock 

time was about 28 minutes, whereas the explicit code took about a minute. An overlay of 

the results shows that agreement between the two codes is very good. If the implicit code 

is run through maximum compression of the target, it runs best at about the same time-step 

size as the explicit code. Both codes compress the target to about the same size and they 

both produce about the same size piston. 

D. The 3D Sphere of 60 jets 

For the 3D case, 60 D -T neutral-plasma jets, placed in a soccer ball arrangement 

of hexagons and pentagons, were all aimed at the origin, where a spherical D -T target was 

positioned (see Fig. V.5). The jets then formed a spherically imploding piston. The sides 

of the pentagons and hexagons are all equal length, and the distances from all vertices to 

the origin are equal. Therefore the angle between any two adjacent jets, on one edge of 

either a pentagon or hexagon, are all equal, because they all form equal triangles with the 

origin. However, the angle between the two jets across a pentagon or hexagon is different. 

Therefore, once the jets have merged, looking along a normal to the center of a pentagon 

or hexagon toward the origin, one will see a decrease in density of the spherical piston, as 

opposed to looking radially through one of the vertices. This, however, does not appear to 

affect the confinement of the target significantly for the duration of maximum implosion. 
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The Initial Setup for the 3D 60-Jet MTF Concept 

Fig. V. 5. The 60 cylindrical jets are arranged in a soccer ball pattern about a 
jherical target in the center. The jets are shaded according to their object number to 
:lp them show up against each other. 

Initially the jets were made the same size as that used in the 24-jet case, lcm in 

radius, but they started interacting only after they got fairly close to the target. So the jets 

were made wider, 1.5 cm in radius, so that they would start to interact farther away from 

the target. The super-jetting would, therefore, have time to spread out before striking the 

target. In three dimensions, the super-jets became sheets, interacting at different angles. 
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The sheets formed perpendicular to the sides of the hexagons and pentagons. The sheets 

interacted when they reached the center of a pentagon or a hexagon. 

The total number of particles was 43,368, with 720 in each jet, and 168 in the tar- 

get, using the explicit SPHINX code. All jets were modeled, i.e., no reflecting boundaries 

were used. The vertex positions were taken from a table generated for the Omega laser 

fusion target chamber. There is a plane of symmetry, but it does not coincide with either 

the x-y, x-z, or y-z plane. Since time was limited, it was simpler just to model all 60 jets 

rather than rotate all the vertex positions to an appropriate position to make the plane of 

symmetry coincide with one of the principal planes. 

The initial conditions for the 60 cylindrical jets and a spherical target are specified 

in the following: 

3D Case, 60-Jet Soccer Ball Pattern Imploding a Target Initial Conditions 

(43,368 particles total: explicit code) 
( 5,768 particles total: implicit code) 
D -T Jets =- 

60 Jets in a soccer ball pattern, 20 cm from the Target. 
Temperature: 11600 OK (1 ev). 
Density: 2.0e-5 gmkc. 
Velocity: 5.0e7 cmlsec. 
Dimension: Cylinder, 1.7cm radius x 3.8cm length. 
EOS: Perfect Gas. 

g -T Target 

Temperature: 23200 OK (2 ev). 
Density: 1.5e-5 gm/cc. 
Dimension: Sphere, 2.5 cm radius. 
EOS: Perfect Gas. 

The results of the explicit code at t = 0.4 psec are illustrated in Fig. V. 6. The par- 
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titles shown in the figure are near maximum compression, however, only jet particles in a 

slab 0.25 cm on either side of the y-z plane are shown. The target particles have been 

removed from the plot to help illustrate the formation of the piston. The jets are coming 

from various angles, so the slab takes a slice through only a few of the jets and at different 

angles. 

Maximum Compression for the 3D 60-Jet Case, t = 0.4 ps 

Fig. V. 6. This figure shows only jet particles from a 0.5 cm thick slab. The tar- 
get particles have been removed to show the formation of the piston more clearly. 

At maximum compression the target was heated to a temperature of 4.2x 1 Ox ‘K, and 
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compressed to a peak density of 0.0002 gm/cc and an average density of 0.00013 gm/cc 

for a duration of about 50 nsec. The piston reached an average density of 0.00065 grn/cc 

for a duration of about 70 nsec, and a peak density of 0.0023 gm/cc. The results are sum- 

marized in Table V. 1. 

The following table shows a comparison of the 2D 24-jet case, the 3D 60-jet case, 

and the desired results. 

Table 1: Comparison, at Maximum Compression, of SPHINX Calculations vs. 
Desired, t=0.4 ps. 

I Desired I 2D, 24 jets 3D, 60 jets 

Target 

Temperature 10 kev 10 kev 10 kev 

Density 1 0.001 gm/cc 1 0.0003 gm/cc 1 0.0005 gm/cc 

Confinement 100 nsec 50 nsec 50 nsec 

Diameter 1 l.Ocm 0.3 cm 1.2 cm 

Piston 

Temperature - 

Density - 

2.4 kev 

0.002 gmlcc 

3.0 kev 

0.0006 gmkc 

Confinement 100 nsec 70 nsec 70 nsec 

This 3D problem was tried using the implicit code with the number of particles 

significantly reduced. There were a total of 5,768 particles, with 96 per jet, and 8 in the 

target. This case did run for a few time-steps, and all 60 jets were propagated toward the 

target properly, but before the jets started to interact, the allocation for memory was 

exceeded. The allocation could have been increased, but it was apparent that the implicit 

code was not going to do the problem any faster than the explicit code. However, this run 
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did demonstrate that the 3D aspects of the implicit code are working correctly, and it was 

able to handle nearly 6,000 particles. 

E. Conclusions of the MTF study 

The results of this study have shown that a fairly uniform spherical piston can be 

formed from an array of neutral plasma jets that start merging from some distance out 

from the target. When the jets first encounter each other, “super-jets” squirt out from 

between them. By varying the distance from the target, the super-jets are allowed to 

spread out and form a more uniform front before impacting the target. If the super-jets 

form too close to the target, they are found to cut up the target and not compress it as uni- 

formly as desired. 

Since this work has shown that a spherical piston might be formed from neutral 

plasma jets, and that conditions near D-T fusion can be reached, it would be very interest- 

ing to pursue this with an optimization study. One would want to look at varying the ini- 

tial conditions such as the distance between the target and the jets; the densities, 

temperatures, and dimensions of the jets and the target; and the velocities and number of 

jets. Additional physics could be included in the explicit code, such as radiation losses 

and magneto-hydrodynamic capabilities. 
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Chapter VI 

Conclusions 

An implicit Smooth Particle Hydrodynamic code has been written, and has been 

demonstrated to give good agreement with analytic solutions, the explicit code, and exper- 

imental data for the various test cases tried. It has recently been demonstrated that for one 

case it can perform the calculations faster than the explicit code with Courant numbers of 

over 3,000, albeit a very unphysical problem (see Chapter IV, section G). This one case, 

however, does prove that it can be done, and it is a first step in expanding the code’s capa- 

bilities to practical problems. In another case the code handled nearly 6,000 particles 

This study is probing the boundaries of a new aspect of the field of SPH, and hence 

it may or may not be found to be a useful region for SPH to operate. The existing SPHINX 

code is typically used for high-velocity impact studies. An implicit code is best used for 

low-velocity, incompressible fluid problems. The new implicit code will need some 

changes to improve on the explicit code, but further work may yet make it useful for SPH. 

The capabilities of the new implicit code, which is lD, 2D, or 3D, include a choice 

of three Krylov solvers along with a multi-pass Jacobi preconditioner to solve the linear 

system. It also uses Newton-Raphson iteration methods with a line-search to solve the 

nonlinear problem. 

The code uses sparse storage and sparse computations to minimize the amount of 

memory and time used. It also makes use of a new right-hand-side function in the 

SPHINX code, written just for these sparse matrices. Also, the Jacobian matrix is calcu- 
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lated numerically, as opposed to analytically, which allows the new code to take advantage 

of almost all of the existing physics that is already in the SPHINX code. 

Five distinctly different versions of the code exist, and each newer version has 

shown a marked improvement in performance over the older ones. The first one uses LU 

Decomposition, a fourth-order Rosenbrock solver, and analytic derivatives for the Jaco- 

bian matrix, and stores the full matrix. It was very slow and cumbersome to use. The 

next version uses numerical derivatives, Krylov solvers, and Newton-Raphson iterations, 

but still calculates and stores the full Jacobian matrix. As a result it uses large amounts of 

memory, and performs many unnecessary calculations of zero. However, because of this 

factor it does catch some unexpected matrix elements that the summation density method 

generates. The sparse versions of the code will need to be modified to handle the summa- 

tion method and are currently restricted to using the continuity equation. 

The two sparse versions of the code are very similar, and both store only the non- 

zero elements of the Jacobian and do not calculate the portions of the matrix that are 

known to be zero, that is, the portions where there is no neighbor relation between parti- 

cles. The difference is in the right-hand-side function, the function that calculates the 

time derivatives for each equation. One uses a function that calculates the rhs for all the 

particles, and the other uses a function that calculates the rhs for only one particle at a 

time. The latter one saves on calculations because for each particle the rhs function only 

has to be calculated for its neighbors, not all particles. This version is the most efficient 

of the five. 

The fifth version, which was attempted but temporarily set aside, uses a matrix- 
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free technique. It worked for only the simplest problems. It was probably attempted pre- 

maturely, because it needs a very good preconditioner. The diagonal-block precondi- 

tioner will, hopefully, allow the matrix-free method to work reliably. The equations for 

this preconditioner have been worked out in what appears to be an efficient arrangement, 

but it would have to be programed and tested, and is being left for future work. 

The following are several other ideas to improve the implicit code. 

1. Set numbers in the Jacobian matrix that are near zero to zero. There would 
then be fewer elements and perhaps faster convergence, and less memory 
required. 

2. Add damping for greater stability. That is, do not let dY change by more than 
some fixed percent of Y. 

3. Parallelize the code to run on a multiprocessor computer. 

4. Optimize settings of the limits and tolerances for a more general set problems. 
There is some indication that the values for the limits and tolerances need to be 
changed for different problems, and they are interrelated. 

5. Currently the effort has been to try to avoid cutting the time step size at all, 
which means cutting it in half, but perhaps a smaller decrease in the time-step 
size would permit a smaller limits on the Newton and Krylov iterations. 

6. Explore the possibility that other SPH hydro-forms of the fluid equations might 
perform better in the implicit code than those being used. 

The implicit code may prove useful when used in conjunction with the MLS fea- 

tures being added to SPHINX because MLS is more computationally intensive than stan- 

dard SPH, as was mentioned in Chapter I Section B. It may help speed up MLS in parts 

of problems where things are changing very slowly. 

There have been a number of unexplained features encountered in the SPHINX 

code, which, if understood, may help both the implicit and explicit codes. One is the 

unexplained escaping of particles through the reflecting boundaries. This escape can hap- 
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pen even when the time-step multiplier is just one. And it has been observed to happen 

for the explicit code too, but it appears to be a problem only at low velocities. For this 

reason, the single-jet test case was studied to get away from all reflecting boundaries. 

This may be an indication of a fundamental problem in the SPH code. 

Another problem noted is the occurrence of unexpected elements in the Jacobian 

when the summation method is used to calculate the density. It is not understood why the 

explicit code cannot do the rarefaction and shock-tube problems when using the continuity 

equation. These extra elements in the Jacobian for the summation method may lead to an 

understanding of why use of the continuity equation does not give the right answer. 

Another problem is: when the smoothing length h is allowed to vary, should h be 

computed before the right-hand-side is computed, or after? If before, it seems to keep h 

from varying, and if after, h is not consistent with the time derivatives of the rhs() function. 

The matrix-free method seems to work only if h is consistent with the time derivatives of 

the right-hand-side computations, but then h does not vary. Where to do the computations 

for new h’s has not been resolved in either the implicit or the explicit code. 

The goals of this research have been reached. An implicit code has been written, 

and it has been shown that it can run a test case with Courant numbers on the order of 

3000. It has been shown in several test cases that the accuracy and precision of the code is 

very good. With more improvements it promises to become a useful working code that 

can be included as another time-step package for the production code SPHINX. 
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Appendix 

A Rayleigh-Taylor problem with finite boundaries 

A derivation of the Rayleigh-Taylor problem with finite boundaries at z = a can be 

found by starting with the general solution to the equation derived in Hoffman [37], for 

which he started with the fluid equations and applied perturbation theory and Fourier 

transformed them and obtained his Eq. (A-27): 

&,$) = k2po$ --$$‘]* 
If p. is considered to be constant, Eq. (A .l) reduces to: 

d”V - = k2v, 
dZ2 

(A .I> 

(A 3 

for which the general solution is a sum of exponentials. 

v(z) = AekZ+B emkz. (A .3) 

The velocity is to vanish at both boundaries and be continuous at the interface. 

Therefore at z = +a, v(a) = 0. That is 

v(a) = A1eka+B1e-ka=O or A1=-B,eY2ka, 

thus v(z>O) = B1 (e-kz-e-2ka eke). 

Similarly for z = -a, ~(-a) = 0, and 

~(--a) = A2 e -ka+B2eku=0 or B2=-A2e -2ka , 

thus v(z<O) = A2 (ekz-e-2ku eekz). 

(A .4) 

(A .5) 

(A 4 

(A .7) 

At the interface the velocities are to be continuous, thus for z = 0 
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B, (1-e-2ku)=A2(1-e-2ka), (A .8> 

or Br = A2 = v, , which is the initial velocity of the interface. Therefore, for the Rayleigh- 

Taylor problem with finite boundaries at z = a Eq. (A .3) becomes: 

-kz - e 
-2ka kz 

v(z) = 
v,(e e ),z>O 

kz v,(e -e -2kae-kz ),z<O 

(A .9> 

The growth rate of the Rayleigh-Taylor problem with finite boundaries can be 

derived by integrating Eq. (A .l) over a small region of z from --E to E that includes the 

interface, and then letting E go to zero. It is assumed that the densities above and below 

the interface are each constant within their respective regions, so that p(z>O) = pahove and 

P(Z<O) = Pbd”W * Integrating the left hand side of Eq. (A .l) and using the derivatives of the 

results of Eq. (A .9) with respect to z, one obtains: 

I, = ~&(po~)d~ = 

-E 

po$iEE = -kvo(pabove + pbelow)(e-ke + e-2kueke) ,(A J-8 

which, in the limit as E goes to zero, becomes 

11 = -kVo(Pabove + Pbelow)(l + e-2ka) (A .ll) 

The integral of the first term of the right hand side of Eq. (A .l) can be split into 

integrals above and below the interface: 

E E 0 

I, = I k2povdz = ~k2pubovevdz + I k2pbelowvdz (A .12) 
/ 

-E 0 -& 

E 0 

I, = I 
k2P,bovcvo(e-kz - e-2kaekz)dz + j k2pbclowvo(ekz - e-2kae-kz)dz (A .13) 

0 -E 
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-2kul kz 
- e ie 

0 
-2ku 1 -kz 

-e -ke )I 1 XA .14) 
-& 

I, = k2vo ~pubove{(evkE- 1) + e-2ka(eke- l)} , (A .15) 

+ i pbelow{ ( 1 - ewke) + e-2ku( 1 - eke)}] 

which, in the limit as E  goes to zero, becomes 

I, = 0. (A .16) 

Integrating the last term of the right hand side can be done using integration by 

parts, and the remaining integral being split up into parts above and below the interface. 

1 
3 

-E 

(A .17) 

E 0 

I3 = -k2” 
Y 

povl:E + f &boveaV + j PbelowaV ’ (A .18) 
0 -& 1 

I, = -k2 $ [ pabovevo( evke - e-2kaekE) - pbelowvo( ekE - e-2kae-ke) , (A .19) 

+ pabovevo{ cemke - 1 > - e -2ka(ekE- l)} 

+ pbelowvo{ (1 - emkE) - e-2ku( 1 - eke)}] 

which, in the limit as E  goes to zero, becomes 

I, = -k2~vo[(pu,,,,-p,,,,,)(1 -e-2ku)]- (A .20) 

/ From 1, = 12 + 1, and Eqs. (A .l l), (A .16), and (A .20) the following is obtained: 

(P y2 = kg (pabove - Pbelow) (1 - e-2ku) 
above ’ Pbelow) (1 + e 

-2ka ’ 
) 

(A .21) 

119 



The new part of the result is the ratio of the exponential function. A plot of the 

function F = [( 1 - em2 k a )/( 1 + ee2 k a )] 1’2 shows that for a = h the new function F is equal 

to approximately one (F = 0.999997), hence does not affect the growth rate, and therefore 

behaves the same as for the Rayleigh-Taylor problem with infinite boundaries. Not until 

a is below about h/2 does it start to affect the growth rate, and then F = 0.998, which is still 

a small change. However, it rapidly drops to zero below h/2. 
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